
Forte Wrapper Documentation
Release 0.0.3

Forte

Jan 19, 2023





CONTENTS

1 Get Started 3

2 Libraries and Wrapper Source 5

3 License 7

4 Available Wrappers 9

Index 21

i



ii



Forte Wrapper Documentation, Release 0.0.3

Forte is a toolkit for building Natural Language Processing pipelines. This repository tries to wrap the fantastic
collections of NLP libraries built by the community.

This project is part of the CASL Open Source family.

CONTENTS 1

https://github.com/asyml/forte-wrappers/actions/workflows/main.yml
https://forte-wrappers.readthedocs.io/en/latest/?badge=latest
http://casl-project.ai/


Forte Wrapper Documentation, Release 0.0.3

2 CONTENTS



CHAPTER

ONE

GET STARTED

• First, install the library along with the desired tools. Let’s take AllenNLP as an example:

git clone https://github.com/asyml/forte-wrappers.git
cd forte-wrappers
pip install ."[allennlp]"

3



Forte Wrapper Documentation, Release 0.0.3

4 Chapter 1. Get Started



CHAPTER

TWO

LIBRARIES AND WRAPPER SOURCE

• NLTK (Processors)

– POS Tagger

– Sentence Segmenter

– Tokenizer

– Lemmatizer

– NER

• spaCy (Processors)

– Tokenizer, Lemmatizer and POS Tagging

– NER

• AllenNLP (Processors)

– Tokenizer, POS Tagging

– Semantic Role Labeling

– Dependency Parsing

• Stanza (Processors)

– Tokenization, POS Tagging, Lemmatizer

– Dependency Parsing

• HuggingFace Models

– BioBERT NER (Processors)

• Vader Sentiment (Processors)

– Sentiment Analysis

• Elastic Search (Processors)

– Elastic Indexer

– Elastic Search

• Faiss (Processors)

– Faiss Indexer

• GPT2 (Processors)

– GPT2 Text Generation

5

https://www.nltk.org/
https://github.com/asyml/forte-wrappers/tree/main/forte/nltk
https://spacy.io/
https://github.com/asyml/forte-wrappers/tree/main/forte/spacy
https://allennlp.org/
https://github.com/asyml/forte-wrappers/tree/main/forte/allennlp
https://stanfordnlp.github.io/stanza/
https://github.com/asyml/forte-wrappers/tree/main/forte/stanza
https://huggingface.co/
https://github.com/dmis-lab/biobert-pytorch
https://github.com/asyml/forte-wrappers/tree/main/forte/huggingface/biobert_ner
https://github.com/cjhutto/vaderSentiment
https://github.com/asyml/forte-wrappers/tree/main/forte/vader
https://www.elastic.co/
https://github.com/asyml/forte-wrappers/tree/main/forte/elastic
https://github.com/facebookresearch/faiss
https://github.com/asyml/forte-wrappers/tree/main/forte/faiss
https://openai.com/blog/gpt-2-1-5b-release/
https://github.com/asyml/forte-wrappers/tree/main/forte/gpt2


Forte Wrapper Documentation, Release 0.0.3

• Tweepy (Processors)

– TwitterAPI Search

6 Chapter 2. Libraries and Wrapper Source

https://docs.tweepy.org/en/latest/index.html
https://github.com/asyml/forte-wrappers/tree/main/forte/twitter


CHAPTER

THREE

LICENSE

Apache License 2.0

7

https://github.com/asyml/forte-wrappers/blob/master/LICENSE


Forte Wrapper Documentation, Release 0.0.3

8 Chapter 3. License



CHAPTER

FOUR

AVAILABLE WRAPPERS

4.1 Processors

4.1.1 AllenNLP

AllenNLP Processors

4.1.2 SpaCy

SpaCy Processors

class fortex.spacy.SpacyProcessor
This processor wraps spaCy(v2.3.x) and ScispaCy(v0.3.0) models, providing functions including sentence pars-
ing, tokenize, POS tagging, lemmatization, NER, and medical entity linking.

This processor will do user defined tasks according to configs. The supported tasks includes:

• sentence: sentence segmentation

• tokenize: word tokenize

• pos: Part-of-speech tagging

• lemma: word lemmatization

• ner: named entity recognition

• dep: dependency parsing

• umls_link: medical entity linking to UMLS concepts

spaCy is a library for advanced Natural Language Processing in Python and Cython. spaCy github page: https:
//github.com/explosion/spaCy/tree/v2.3.1

ScispaCy is a Python package containing spaCy models for processing biomedical, scientific or clinical text.
ScispaCy github page: https://github.com/allenai/scispacy/tree/v0.3.0

Citation:

• spaCy: Industrial-strength Natural Language Processing in Python

• ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

9

https://github.com/explosion/spaCy/tree/v2.3.1
https://github.com/explosion/spaCy/tree/v2.3.1
https://github.com/allenai/scispacy/tree/v0.3.0


Forte Wrapper Documentation, Release 0.0.3

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod default_configs()
This defines a basic config structure for spaCy.

Following are the keys for this dictionary:

• processors: List of strings that defines which components will be included and will be performed on
the input pack, default value is [“sentence”, “tokenize”, “pos”, “lemma”] which performs the basic
operations included in spaCy models like en_core_web_sm, sentence performs segmentation, tokenize
will perform tokenization and pos tagging, ner will perform named entity recognition, lemma will
perform lemmatization.

Additional values for this list further includes: ner for named entity and dep for dependency parsing.

• medical_onto_type: defines which entry type in the input pack that the medical entity mentions
should be saved as output.

• umls_onto_type: defines which entry type in the input pack that the UMLS concept links should
be saved as part of output.

• lang: language model, default is spaCy en_core_web_sm model. The pipeline support spaCy and
ScispaCy models. A list of available spaCy models could be found at https://spacy.io/models. For
UMLS entity linking task, ScispaCy model trained on biomedical dataset is preferred. A list of avail-
able models could be found at https://github.com/allenai/scispacy/tree/v0.3.0.

• require_gpu: whether GPU is required, default value is False. This value is directly used by https:
//spacy.io/api/top-level#spacy.require_gpu

• prefer_gpu: whether gpu is preferred, default value is False. This value is directly used by https:
//spacy.io/api/top-level#spacy.prefer_gpu

• gpu_id: the GPU device index to use when GPU is enabled. Default is 0.

• testing: states whether or not the processor is being used in a test case.

Returns: A dictionary with the default config for this processor.

record(record_meta)
Method to add output type record of current processor to forte.data.data_pack.Meta.record.
The processor produce different types with different settings of processors in config.

Parameters record_meta – the field in the data pack for type record that need to fill in for
consistency checking.

class fortex.spacy.SpacyBatchedProcessor
This processor wraps spaCy(v2.3.x) and ScispaCy(v0.3.0) models, providing most models included in the
SpaCy pipeline, such as including sentence parsing, tokenize, POS tagging, lemmatization, NER, and medi-
cal entity linking. This is the batch processing version for SpacyProcessor, where it supports to batching
across different data packs.

This processor will do user defined tasks according to configs. The supported tasks includes:

• sentence: sentence segmentation

• tokenize: word tokenize

• pos: Part-of-speech tagging

• lemma: word lemmatization

10 Chapter 4. Available Wrappers

https://spacy.io/models
https://github.com/allenai/scispacy/tree/v0.3.0
https://spacy.io/api/top-level#spacy.require_gpu
https://spacy.io/api/top-level#spacy.require_gpu
https://spacy.io/api/top-level#spacy.prefer_gpu
https://spacy.io/api/top-level#spacy.prefer_gpu
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record


Forte Wrapper Documentation, Release 0.0.3

• ner: named entity recognition

• dep: dependency parsing

• umls_link: medical entity linking to UMLS concepts

Citation:

• spaCy: Industrial-strength Natural Language Processing in Python

• ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod define_batcher()
The batcher take raw text from a fixed number of data packs.

predict(data_batch)
The function that task processors should implement. Make predictions for the input data_batch.

Parameters data_batch (dict) – A batch of instances in our dict format.

Returns The prediction results in dictionary form.

pack(pack, predict_results, _=None)
The function that task processors should implement. It is the custom function on how to add the predicted
output back to the data pack.

Parameters

• pack – The pack to add entries or fields to.

• predict_results – The prediction results returned by predict(). This processor
will add these results to the provided pack as entry and attributes.

• context – The context entry that the prediction is performed, and the pack operation
should be performed related to this range annotation. If None, then we consider the whole
data pack is used as the context.

record(record_meta)
Method to add output type record of current processor to forte.data.data_pack.Meta.record.
The processor produce different types with different settings of processors in config.

Parameters record_meta – the field in the data pack for type record that need to fill in for
consistency checking.

classmethod default_configs()
Specify additional parameters for SpaCy processor.

The available parameters are:

• medical_onto_type: defines which entry type in the input pack that the medical entity mentions should
be saved as output.

• umls_onto_type: defines which entry type in the input pack that the UMLS concept links should be
saved as part of output.

4.1. Processors 11

https://docs.python.org/3/library/stdtypes.html#dict
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record


Forte Wrapper Documentation, Release 0.0.3

• batcher.batch_size: max size of the batch (in terms of number of data packs).

• processors: List of strings that defines which components will be included and will be performed on
the input pack, default value is [“sentence”, “tokenize”, “pos”, “lemma”] which performs the basic
operations included in spaCy models like en_core_web_sm, sentence performs segmentation, tokenize
will perform tokenization and pos tagging, ner will perform named entity recognition, lemma will
perform lemmatization. Additional values for this list further includes: ner for named entity and dep
for dependency parsing.

• lang: language model, default is spaCy en_core_web_sm model. The pipeline support spaCy and
ScispaCy models. A list of available spaCy models could be found at https://spacy.io/models. For
UMLS entity linking task, ScispaCy model trained on biomedical dataset is preferred. A list of avail-
able models could be found at https://github.com/allenai/scispacy/tree/v0.3.0

• require_gpu: whether GPU is required, default value is False. This value is directly used by https:
//spacy.io/api/top-level#spacy.require_gpu

• prefer_gpu: whether gpu is preferred, default value is False. This value is directly used by https:
//spacy.io/api/top-level#spacy.prefer_gpu

• gpu_id: the GPU device index to use when GPU is enabled. Default is 0.

• num_processes: number of processes to run when using spacy.pipe. Default is 1. This will be passed
directly to the n_process option.

• testing: states whether or not the processor is being used in a test case.

4.1.3 NLTK

NLTK Processors

class fortex.nltk.NLTKPOSTagger
A wrapper of NLTK pos tagger.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

record(record_meta)
Method to add output type record of NLTKPOSTagger, which adds attribute pos to
ft.onto.base_ontology.Token to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

expected_types_and_attributes()
Method to add expected type ft.onto.base_ontology.Token for input which would be checked
before running the processor if the pipeline is initialized with enforce_consistency=True or
enforce_consistency() was enabled for the pipeline.

class fortex.nltk.NLTKSentenceSegmenter
A wrapper of NLTK sentence tokenizer.

12 Chapter 4. Available Wrappers

https://spacy.io/models
https://github.com/allenai/scispacy/tree/v0.3.0
https://spacy.io/api/top-level#spacy.require_gpu
https://spacy.io/api/top-level#spacy.require_gpu
https://spacy.io/api/top-level#spacy.prefer_gpu
https://spacy.io/api/top-level#spacy.prefer_gpu
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency


Forte Wrapper Documentation, Release 0.0.3

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

record(record_meta)
Method to add output type record of NLTKSentenceSegmenter, which is ft.onto.base_ontology.Sentence to
forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

class fortex.nltk.NLTKWordTokenizer
A wrapper of NLTK word tokenizer.

record(record_meta)
Method to add output type record of NLTKWordTokenizer, which is ft.onto.base_ontology.Token, to
forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

class fortex.nltk.NLTKLemmatizer
A wrapper of NLTK lemmatizer.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

record(record_meta)
Method to add output type record of NLTKLemmatizer which adds attribute lemma to
ft.onto.base_ontology.Token to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

expected_types_and_attributes()
Method to add expected type ft.onto.base_ontology.Token with attribute pos which would be
checked before running the processor if the pipeline is initialized with enforce_consistency=True or
enforce_consistency() was enabled for the pipeline.

class fortex.nltk.NLTKChunker
A wrapper of NLTK chunker.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

4.1. Processors 13

https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency


Forte Wrapper Documentation, Release 0.0.3

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod default_configs()
This defines a basic config structure for NLTKChunker.

record(record_meta)
Method to add output type record of NLTKChunker which adds ft.onto.base_ontology.Phrase with attribute
phrase_type to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

expected_types_and_attributes()
Method to add expected type ft.onto.base_ontology.Token` with attribute pos and
ft.onto.base_ontology.Sentence which would be checked before running the processor if the pipeline is
initialized with enforce_consistency=True or enforce_consistency() was enabled for the pipeline.

class fortex.nltk.NLTKNER
A wrapper of NLTK NER.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

record(record_meta)
Method to add output type record of NLTKNER which is ft.onto.base_ontology.EntityMention with at-
tribute phrase_type to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

expected_types_and_attributes()
Method to add expected type ft.onto.base_ontology.Token` with attribute pos and
ft.onto.base_ontology.Sentence which would be checked before running the processor if the pipeline is
initialized with enforce_consistency=True or enforce_consistency() was enabled for the pipeline.

4.1.4 Stanza

Stanza Processors

class fortex.stanza.StandfordNLPProcessor

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

14 Chapter 4. Available Wrappers

https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency


Forte Wrapper Documentation, Release 0.0.3

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod default_configs()
This defines a basic config structure for StanfordNLP.

record(record_meta)
Method to add output type record of current processor to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

4.1.5 HuggingFace

HuggingFace Processors

class fortex.huggingface.ZeroShotClassifier
Wrapper of the models on HuggingFace platform with pipeline tag of zero-shot-classification. https://
huggingface.co/models?pipeline_tag=zero-shot-classification This wrapper could take any model name on Hug-
gingFace platform with pipeline tag of zero-shot-classification in configs to make prediction on the user specified
entry type in the input pack and the prediction result goes to the user specified attribute name of that entry type
in the output pack. User could input the prediction labels in the config with any word or phrase.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod default_configs()
This defines a basic config structure for ZeroShotClassifier.

Following are the keys for this dictionary:

• entry_type: defines which entry type in the input pack to make prediction on. The default makes
prediction on each Sentence in the input pack.

• attribute_name: defines which attribute of the entry_type in the input pack to save prediction to.
The default saves prediction to the classification attribute for each Sentence in the input pack.

• multi_class: whether to allow multiple class true

• model_name: language model, default is “valhalla/distilbart-mnli-12-1”. The wrapper supports
Hugging Face models with pipeline tag of zero-shot-classification.

• candidate_labels: The set of possible class labels to classify each sequence into. Can be a single
label, a string of comma-separated labels, or a list of labels. Note that for the model with a specific
language, the candidate_labels need to be of that language.

• hypothesis_template: The template used to turn each label into an NLI-style hypothesis. This tem-
plate must include a {} or similar syntax for the candidate label to be inserted into the template.

4.1. Processors 15

https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification


Forte Wrapper Documentation, Release 0.0.3

For example, the default template is "This example is {}." Note that for the model with
a specific language, the hypothesis_template need to be of that language.

• cuda_device: Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a
positive will run the model on the associated CUDA device id.

Returns: A dictionary with the default config for this processor.

expected_types_and_attributes()
Method to add expected type ft.onto.base_ontology.Sentence which would be checked before running the
processor if the pipeline is initialized with enforce_consistency=True or enforce_consistency()
was enabled for the pipeline.

record(record_meta)
Method to add output type record of ZeroShotClassifier which is user specified entry type with user speci-
fied attribute name to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

class fortex.huggingface.QuestionAnsweringSingle
Wrapper of the models on HuggingFace platform with pipeline tag of question-answering (reading compre-
hension). https://huggingface.co/models?pipeline_tag=question-answering This wrapper could take any model
name on HuggingFace platform with pipeline tag of question-answering in configs to make prediction on the
context of user specified entry type in the input pack and the prediction result would be annotated as Phrase in
the output pack. User could input the question in the config.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod default_configs()
This defines a basic config structure for QuestionAnsweringSingle.

Following are the keys for this dictionary:

• entry_type: defines which entry type in the input pack to make prediction on. The default makes
prediction on each Document in the input pack.

• model_name: language model, default is “ktrapeznikov/biobert_v1.1_pubmed_squad_v2”. The
wrapper supports Hugging Face models with pipeline tag of question-answering.

• question: One question to retrieve answer from the input pack context.

• max_answer_len: The maximum length of predicted answers (e.g., only answers with a shorter
length are considered).

• cuda_device: Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a
positive will run the model on the associated CUDA device id.

• handle_impossible_answer: Whether or not we accept impossible as an answer.

Returns: A dictionary with the default config for this processor.

expected_types_and_attributes()
Method to add user specified expected type which would be checked before running the processor if the

16 Chapter 4. Available Wrappers

https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://huggingface.co/models?pipeline_tag=question-answering


Forte Wrapper Documentation, Release 0.0.3

pipeline is initialized with enforce_consistency=True or enforce_consistency() was enabled for
the pipeline.

record(record_meta)
Method to add output type record of QuestionAnsweringSingle which is “ft.onto.base_ontology.Phrase”
to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

class fortex.huggingface.BERTTokenizer
A wrapper of BERT tokenizer.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod default_configs()
Returns a dict of configurations of the processor with default values. Used to replace the missing values of
input configs during pipeline construction.

record(record_meta)
Method to add output type ft.onto.base_ontology.Subword of current processor BERTTokenizer to forte.
data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

class fortex.huggingface.BioBERTNERPredictor
An Named Entity Recognizer fine-tuned on BioBERT

Note that to use BioBERTNERPredictor, the ontology of Pipeline must be an ontology that include
ft.onto.base_ontology.Subword and ft.onto.base_ontology.Sentence.

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

predict(data_batch)
The function that task processors should implement. Make predictions for the input data_batch.

Parameters data_batch (dict) – A batch of instances in our dict format.

Returns The prediction results in dictionary form.

pack(pack, predict_results=None, context=None)
Write the prediction results back to datapack by aggregating subwords into named entity mentions.

4.1. Processors 17

https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://docs.python.org/3/library/stdtypes.html#dict


Forte Wrapper Documentation, Release 0.0.3

classmethod default_configs()
Default config for NER Predictor

record(record_meta)
Method to add output type record of current processor to forte.data.data_pack.Meta.record.

Parameters record_meta – the field in the datapack for type record that need to fill in for
consistency checking.

expected_types_and_attributes()
Method to add expected type ft.onto.base_ontology.Subword` with attribute is_first_segment and
ft.onto.base_ontology.Sentence which would be checked before running the processor if the pipeline is
initialized with enforce_consistency=True or enforce_consistency() was enabled for the pipeline.

4.1.6 Twitter

Twitter Processors

class fortex.tweepy.TweetSearchProcessor
TweetSearchProcessor is designed to query tweets with Tweepy and Twitter API. Tweets will be returned as
datapacks in input multipack.

classmethod default_configs()
This defines a basic config structure for TweetSearchProcessor. For more details about the parameters,
refer to https://docs.tweepy.org/en/latest/api.html#tweepy.API.search_tweets and https://developer.twitter.
com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets

Returns A dictionary with the default config for this processor.

Following are the keys for this dictionary:

• “credential_file”: Defines the path of credential file needed for Twitter API usage.

• “num_tweets_returned”: Defines the number of tweets returned by processor.

• “lang”: Language, restricts tweets to the given language, default is ‘en’.

• “date_since”: Restricts tweets created after the given date.

• “result_type”: Defines what type of search results to receive. The default is “recent.” Valid values
include:

mixed : include both popular and real time results in the response

recent : return only the most recent results in the response

popular : return only the most popular results in the response.

• “query_pack_name”: The query pack’s name, default is “query”.

• “response_pack_name_prefix”: The pack name prefix to be used in response data packs.

18 Chapter 4. Available Wrappers

https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record
https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency
https://docs.tweepy.org/en/latest/api.html#tweepy.API.search_tweets
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets


Forte Wrapper Documentation, Release 0.0.3

4.1.7 Vader

Vader Processors

class fortex.vader.VaderSentimentProcessor
A wrapper of a sentiment analyzer: Vader (Valence Aware Dictionary and Sentiment Reasoner). Vader needs to
be installed to use this package

> pip install vaderSentiment

or

> pip install –upgrade vaderSentiment

This processor will add assign sentiment label to each sentence in the document. If the input pack contains no
sentence then no processing will happen. If the data pack has multiple set of sentences, one can specify the set
of sentences to tag by setting the sentence_component attribute.

Vader URL: (https://github.com/cjhutto/vaderSentiment)

Citation: VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text (by C.J.
Hutto and Eric Gilbert)

initialize(resources, configs)
The pipeline will call the initialize method at the start of a processing. The processor and reader will be
initialized with configs, and register global resources into resource. The implementation should set
up the states of the component.

Parameters

• resources – A global resource register. User can register shareable resources here, for
example, the vocabulary.

• configs – The configuration passed in to set up this component.

classmethod default_configs()
This defines a basic config structure for VaderSentimentProcessor.

Returns A dictionary with the default config for this processor.

Following are the keys for this dictionary:

• “entry_type”: Defines which entry type in the input pack to make prediction on. The default makes
prediction on each Sentence in the input pack.

• “attribute_name”: Defines which attribute of the entry_type in the input pack to save score to. The
default saves prediction to the sentiment attribute for each Sentence in the input pack.

• “sentence_component”: str. If not None, the processor will process sentence with the provided
component name. If None, then all sentences will be processed.

expected_types_and_attributes()
Method to add expected type ft.onto.base_ontology.Sentence which would be checked before running the
processor if the pipeline is initialized with enforce_consistency=True or enforce_consistency()
was enabled for the pipeline.

4.1. Processors 19

https://github.com/cjhutto/vaderSentiment
https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency


Forte Wrapper Documentation, Release 0.0.3

20 Chapter 4. Available Wrappers



INDEX

B
BERTTokenizer (class in fortex.huggingface), 17
BioBERTNERPredictor (class in for-

tex.huggingface), 17

D
default_configs() (for-

tex.huggingface.BERTTokenizer class method),
17

default_configs() (for-
tex.huggingface.BioBERTNERPredictor class
method), 17

default_configs() (for-
tex.huggingface.QuestionAnsweringSingle
class method), 16

default_configs() (for-
tex.huggingface.ZeroShotClassifier class
method), 15

default_configs() (fortex.nltk.NLTKChunker
class method), 14

default_configs() (for-
tex.spacy.SpacyBatchedProcessor class
method), 11

default_configs() (fortex.spacy.SpacyProcessor
class method), 10

default_configs() (for-
tex.stanza.StandfordNLPProcessor class
method), 15

default_configs() (for-
tex.tweepy.TweetSearchProcessor class
method), 18

default_configs() (for-
tex.vader.VaderSentimentProcessor class
method), 19

define_batcher() (for-
tex.spacy.SpacyBatchedProcessor class
method), 11

E
expected_types_and_attributes() (for-

tex.huggingface.BioBERTNERPredictor
method), 18

expected_types_and_attributes() (for-
tex.huggingface.QuestionAnsweringSingle
method), 16

expected_types_and_attributes() (for-
tex.huggingface.ZeroShotClassifier method),
16

expected_types_and_attributes() (for-
tex.nltk.NLTKChunker method), 14

expected_types_and_attributes() (for-
tex.nltk.NLTKLemmatizer method), 13

expected_types_and_attributes() (for-
tex.nltk.NLTKNER method), 14

expected_types_and_attributes() (for-
tex.nltk.NLTKPOSTagger method), 12

expected_types_and_attributes() (for-
tex.vader.VaderSentimentProcessor method),
19

I
initialize() (fortex.huggingface.BERTTokenizer

method), 17
initialize() (fortex.huggingface.BioBERTNERPredictor

method), 17
initialize() (fortex.huggingface.QuestionAnsweringSingle

method), 16
initialize() (fortex.huggingface.ZeroShotClassifier

method), 15
initialize() (fortex.nltk.NLTKChunker method), 13
initialize() (fortex.nltk.NLTKLemmatizer method),

13
initialize() (fortex.nltk.NLTKNER method), 14
initialize() (fortex.nltk.NLTKPOSTagger method),

12
initialize() (fortex.nltk.NLTKSentenceSegmenter

method), 12
initialize() (fortex.spacy.SpacyBatchedProcessor

method), 11
initialize() (fortex.spacy.SpacyProcessor method),

9
initialize() (fortex.stanza.StandfordNLPProcessor

method), 14
initialize() (fortex.vader.VaderSentimentProcessor

21



Forte Wrapper Documentation, Release 0.0.3

method), 19

N
NLTKChunker (class in fortex.nltk), 13
NLTKLemmatizer (class in fortex.nltk), 13
NLTKNER (class in fortex.nltk), 14
NLTKPOSTagger (class in fortex.nltk), 12
NLTKSentenceSegmenter (class in fortex.nltk), 12
NLTKWordTokenizer (class in fortex.nltk), 13

P
pack() (fortex.huggingface.BioBERTNERPredictor

method), 17
pack() (fortex.spacy.SpacyBatchedProcessor method),

11
predict() (fortex.huggingface.BioBERTNERPredictor

method), 17
predict() (fortex.spacy.SpacyBatchedProcessor

method), 11

Q
QuestionAnsweringSingle (class in for-

tex.huggingface), 16

R
record() (fortex.huggingface.BERTTokenizer

method), 17
record() (fortex.huggingface.BioBERTNERPredictor

method), 18
record() (fortex.huggingface.QuestionAnsweringSingle

method), 17
record() (fortex.huggingface.ZeroShotClassifier

method), 16
record() (fortex.nltk.NLTKChunker method), 14
record() (fortex.nltk.NLTKLemmatizer method), 13
record() (fortex.nltk.NLTKNER method), 14
record() (fortex.nltk.NLTKPOSTagger method), 12
record() (fortex.nltk.NLTKSentenceSegmenter

method), 13
record() (fortex.nltk.NLTKWordTokenizer method), 13
record() (fortex.spacy.SpacyBatchedProcessor

method), 11
record() (fortex.spacy.SpacyProcessor method), 10
record() (fortex.stanza.StandfordNLPProcessor

method), 15

S
SpacyBatchedProcessor (class in fortex.spacy), 10
SpacyProcessor (class in fortex.spacy), 9
StandfordNLPProcessor (class in fortex.stanza),

14

T
TweetSearchProcessor (class in fortex.tweepy), 18

V
VaderSentimentProcessor (class in fortex.vader),

19

Z
ZeroShotClassifier (class in fortex.huggingface),

15

22 Index


	Get Started
	Libraries and Wrapper Source
	License
	Available Wrappers
	Index

