

Welcome to Forte Wrapper’s documentation!

	Get Started

	Libraries and Wrapper Source

	License

Available Wrappers

	Processors
	AllenNLP

	SpaCy

	NLTK

	Stanza

	HuggingFace

	Twitter

	Vader

 Processors

Processors

AllenNLP

AllenNLP Processors

SpaCy

SpaCy Processors

	
class fortex.spacy.SpacyProcessor

	This processor wraps spaCy(v2.3.x) and ScispaCy(v0.3.0) models,
providing functions including sentence parsing, tokenize, POS tagging,
lemmatization, NER, and medical entity linking.

This processor will do user defined tasks according to configs.
The supported tasks includes:

	sentence: sentence segmentation

	tokenize: word tokenize

	pos: Part-of-speech tagging

	lemma: word lemmatization

	ner: named entity recognition

	dep: dependency parsing

	umls_link: medical entity linking to UMLS concepts

spaCy is a library for advanced Natural Language Processing in Python
and Cython.
spaCy github page: https://github.com/explosion/spaCy/tree/v2.3.1

ScispaCy is a Python package containing spaCy models for processing
biomedical, scientific or clinical text.
ScispaCy github page: https://github.com/allenai/scispacy/tree/v0.3.0

Citation:

	spaCy: Industrial-strength Natural Language Processing in Python

	ScispaCy: Fast and Robust Models for Biomedical Natural Language
Processing.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod default_configs()

	This defines a basic config structure for spaCy.

Following are the keys for this dictionary:

	processors: List of strings that defines which components
will be included and will be performed on the input pack,
default value is [“sentence”, “tokenize”, “pos”, “lemma”]
which performs the basic operations included in spaCy models like
en_core_web_sm, sentence performs segmentation, tokenize
will perform tokenization and pos tagging, ner will perform
named entity recognition, lemma will perform lemmatization.

Additional values for this list further includes:
ner for named entity and dep for dependency parsing.

	
	medical_onto_type: defines which entry type in the input pack
	that the medical entity mentions should be saved as output.

	
	umls_onto_type: defines which entry type in the input pack
	that the UMLS concept links should be saved as part of output.

	lang: language model, default is spaCy en_core_web_sm model.
The pipeline support spaCy and ScispaCy models.
A list of available spaCy models could be found at
https://spacy.io/models.
For UMLS entity linking task, ScispaCy model trained on
biomedical dataset is preferred. A list of available models
could be found at
https://github.com/allenai/scispacy/tree/v0.3.0.

	require_gpu: whether GPU is required, default value is False.
This value is directly used by
https://spacy.io/api/top-level#spacy.require_gpu

	prefer_gpu: whether gpu is preferred, default value is False.
This value is directly used by
https://spacy.io/api/top-level#spacy.prefer_gpu

	gpu_id: the GPU device index to use when GPU is enabled. Default
is 0.

	testing: states whether or not the processor is being used in a

test case.

Returns: A dictionary with the default config for this processor.

	
record(record_meta)

	Method to add output type record of current processor
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record]. The processor produce
different types with different settings of processors in config.

	Parameters

	record_meta – the field in the data pack for type record that need to
fill in for consistency checking.

	
class fortex.spacy.SpacyBatchedProcessor

	This processor wraps spaCy(v2.3.x) and ScispaCy(v0.3.0) models,
providing most models included in the SpaCy pipeline, such as including
sentence parsing, tokenize, POS tagging, lemmatization, NER, and medical
entity linking. This is the batch processing version for
SpacyProcessor, where it supports to
batching across different data packs.

This processor will do user defined tasks according to configs.
The supported tasks includes:

	sentence: sentence segmentation

	tokenize: word tokenize

	pos: Part-of-speech tagging

	lemma: word lemmatization

	ner: named entity recognition

	dep: dependency parsing

	umls_link: medical entity linking to UMLS concepts

Citation:

	spaCy: Industrial-strength Natural Language Processing in Python

	ScispaCy: Fast and Robust Models for Biomedical Natural Language
Processing.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod define_batcher()

	The batcher take raw text from a fixed number of data packs.

	
predict(data_batch)

	The function that task processors should implement. Make
predictions for the input data_batch.

	Parameters

	data_batch (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A batch of instances in our dict format.

	Returns

	The prediction results in dictionary form.

	
pack(pack, predict_results, _=None)

	The function that task processors should implement. It is the
custom function on how to add the predicted output back to the data
pack.

	Parameters

	
	pack – The pack to add entries or fields to.

	predict_results – The prediction results returned by
predict().
This processor will add these results to the provided pack
as entry and attributes.

	context – The context entry that the
prediction is performed, and the pack operation should
be performed related to this range annotation. If None,
then we consider the whole data pack is used as the context.

	
record(record_meta)

	Method to add output type record of current processor
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record]. The processor produce
different types with different settings of processors in config.

	Parameters

	record_meta – the field in the data pack for type record that need to
fill in for consistency checking.

	
classmethod default_configs()

	Specify additional parameters for SpaCy processor.

The available parameters are:
- medical_onto_type: defines which entry type in the input pack

that the medical entity mentions should be saved as output.

	
	umls_onto_type: defines which entry type in the input pack
	that the UMLS concept links should be saved as part of output.

	
	batcher.batch_size: max size of the batch (in terms of number of
	data packs).

	processors: List of strings that defines which components
will be included and will be performed on the input pack,
default value is [“sentence”, “tokenize”, “pos”, “lemma”]
which performs the basic operations included in spaCy models like
en_core_web_sm, sentence performs segmentation, tokenize
will perform tokenization and pos tagging, ner will perform
named entity recognition, lemma will perform lemmatization.
Additional values for this list further includes:
ner for named entity and dep for dependency parsing.

	lang: language model, default is spaCy en_core_web_sm model.
The pipeline support spaCy and ScispaCy models.
A list of available spaCy models could be found at
https://spacy.io/models.
For UMLS entity linking task, ScispaCy model trained on
biomedical dataset is preferred. A list of available models
could be found at
https://github.com/allenai/scispacy/tree/v0.3.0

	require_gpu: whether GPU is required, default value is False.
This value is directly used by
https://spacy.io/api/top-level#spacy.require_gpu

	prefer_gpu: whether gpu is preferred, default value is False.
This value is directly used by
https://spacy.io/api/top-level#spacy.prefer_gpu

	gpu_id: the GPU device index to use when GPU is enabled. Default
is 0.

	num_processes: number of processes to run when using spacy.pipe.
Default is 1. This will be passed directly to the n_process option.

	testing: states whether or not the processor is being used in a

test case.

NLTK

NLTK Processors

	
class fortex.nltk.NLTKPOSTagger

	A wrapper of NLTK pos tagger.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
record(record_meta)

	Method to add output type record of NLTKPOSTagger, which adds
attribute pos to ft.onto.base_ontology.Token
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
expected_types_and_attributes()

	Method to add expected type ft.onto.base_ontology.Token for input
which would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

	
class fortex.nltk.NLTKSentenceSegmenter

	A wrapper of NLTK sentence tokenizer.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
record(record_meta)

	Method to add output type record of NLTKSentenceSegmenter, which
is ft.onto.base_ontology.Sentence
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
class fortex.nltk.NLTKWordTokenizer

	A wrapper of NLTK word tokenizer.

	
record(record_meta)

	Method to add output type record of NLTKWordTokenizer, which is
ft.onto.base_ontology.Token,
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
class fortex.nltk.NLTKLemmatizer

	A wrapper of NLTK lemmatizer.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
record(record_meta)

	Method to add output type record of NLTKLemmatizer which adds
attribute lemma to ft.onto.base_ontology.Token
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
expected_types_and_attributes()

	Method to add expected type ft.onto.base_ontology.Token with
attribute pos which
would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

	
class fortex.nltk.NLTKChunker

	A wrapper of NLTK chunker.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod default_configs()

	This defines a basic config structure for NLTKChunker.

	
record(record_meta)

	Method to add output type record of NLTKChunker which adds
ft.onto.base_ontology.Phrase with attribute phrase_type
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
expected_types_and_attributes()

	Method to add expected type ft.onto.base_ontology.Token` with
attribute pos and ft.onto.base_ontology.Sentence which
would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

	
class fortex.nltk.NLTKNER

	A wrapper of NLTK NER.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
record(record_meta)

	Method to add output type record of NLTKNER which is
ft.onto.base_ontology.EntityMention with attribute phrase_type
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
expected_types_and_attributes()

	Method to add expected type ft.onto.base_ontology.Token` with
attribute pos and ft.onto.base_ontology.Sentence which
would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

Stanza

Stanza Processors

	
class fortex.stanza.StandfordNLPProcessor

	
	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod default_configs()

	This defines a basic config structure for StanfordNLP.

	
record(record_meta)

	Method to add output type record of current processor
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

HuggingFace

HuggingFace Processors

	
class fortex.huggingface.ZeroShotClassifier

	Wrapper of the models on HuggingFace platform with pipeline tag of
zero-shot-classification.
https://huggingface.co/models?pipeline_tag=zero-shot-classification
This wrapper could take any model name on HuggingFace platform with pipeline
tag of zero-shot-classification in configs to make prediction on the user
specified entry type in the input pack and the prediction result goes to the
user specified attribute name of that entry type in the output pack. User
could input the prediction labels in the config with any word or phrase.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod default_configs()

	This defines a basic config structure for ZeroShotClassifier.

	Following are the keys for this dictionary:
	
	entry_type: defines which entry type in the input pack to make
prediction on. The default makes prediction on each Sentence
in the input pack.

	attribute_name: defines which attribute of the entry_type
in the input pack to save prediction to. The default
saves prediction to the classification attribute for each
Sentence in the input pack.

	multi_class: whether to allow multiple class true

	model_name: language model, default is
“valhalla/distilbart-mnli-12-1”.
The wrapper supports Hugging Face models with pipeline tag of
zero-shot-classification.

	candidate_labels: The set of possible class labels to
classify each sequence into. Can be a single label, a string of
comma-separated labels, or a list of labels. Note that for the
model with a specific language, the candidate_labels need to
be of that language.

	hypothesis_template: The template used to turn each label
into an NLI-style hypothesis. This template must include a {}
or similar syntax for the candidate label to be inserted into
the template. For example, the default
template is "This example is {}." Note that for the
model with a specific language, the hypothesis_template need to
be of that language.

	cuda_device: Device ordinal for CPU/GPU supports. Setting
this to -1 will leverage CPU, a positive will run the model
on the associated CUDA device id.

Returns: A dictionary with the default config for this processor.

	
expected_types_and_attributes()

	Method to add expected type ft.onto.base_ontology.Sentence which
would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

	
record(record_meta)

	Method to add output type record of ZeroShotClassifier which is
user specified entry type with user specified attribute name
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
class fortex.huggingface.QuestionAnsweringSingle

	Wrapper of the models on HuggingFace platform with pipeline tag of
question-answering (reading comprehension).
https://huggingface.co/models?pipeline_tag=question-answering
This wrapper could take any model name on HuggingFace platform with pipeline
tag of question-answering in configs to make prediction on the context of
user specified entry type in the input pack and the prediction result would
be annotated as Phrase in the output pack. User could input the question
in the config.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod default_configs()

	This defines a basic config structure for QuestionAnsweringSingle.

	Following are the keys for this dictionary:
	
	entry_type: defines which entry type in the input pack to make
prediction on. The default makes prediction on each Document
in the input pack.

	model_name: language model, default is
“ktrapeznikov/biobert_v1.1_pubmed_squad_v2”.
The wrapper supports Hugging Face models with pipeline tag of
question-answering.

	question: One question to retrieve answer from the input pack
context.

	max_answer_len: The maximum length of predicted answers (e.g.,
only answers with a shorter length are considered).

	cuda_device: Device ordinal for CPU/GPU supports. Setting
this to -1 will leverage CPU, a positive will run the model
on the associated CUDA device id.

	handle_impossible_answer: Whether or not we accept
impossible as an answer.

Returns: A dictionary with the default config for this processor.

	
expected_types_and_attributes()

	Method to add user specified expected type which
would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

	
record(record_meta)

	Method to add output type record of QuestionAnsweringSingle which
is “ft.onto.base_ontology.Phrase”
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
class fortex.huggingface.BERTTokenizer

	A wrapper of BERT tokenizer.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod default_configs()

	Returns a dict of configurations of the processor with default
values. Used to replace the missing values of input configs during
pipeline construction.

	
record(record_meta)

	Method to add output type ft.onto.base_ontology.Subword
of current processor BERTTokenizer
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
class fortex.huggingface.BioBERTNERPredictor

	An Named Entity Recognizer fine-tuned on BioBERT

Note that to use BioBERTNERPredictor, the ontology of
Pipeline must be an ontology that include
ft.onto.base_ontology.Subword and ft.onto.base_ontology.Sentence.

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
predict(data_batch)

	The function that task processors should implement. Make
predictions for the input data_batch.

	Parameters

	data_batch (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A batch of instances in our dict format.

	Returns

	The prediction results in dictionary form.

	
pack(data_pack, output_dict=None, context=None)

	Write the prediction results back to datapack by aggregating subwords
into named entity mentions.

	
classmethod default_configs()

	Default config for NER Predictor

	
record(record_meta)

	Method to add output type record of current processor
to forte.data.data_pack.Meta.record [https://asyml-forte.readthedocs.io/en/latest/code/data.html#forte.data.data_pack.Meta.record].

	Parameters

	record_meta – the field in the datapack for type record that need to
fill in for consistency checking.

	
expected_types_and_attributes()

	Method to add expected type ft.onto.base_ontology.Subword` with
attribute is_first_segment and ft.onto.base_ontology.Sentence which
would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

Twitter

Twitter Processors

	
class fortex.tweepy.TweetSearchProcessor

	TweetSearchProcessor is designed to query tweets with Tweepy and
Twitter API.
Tweets will be returned as datapacks in input multipack.

	
classmethod default_configs()

	This defines a basic config structure for TweetSearchProcessor.
For more details about the parameters, refer to
https://docs.tweepy.org/en/latest/api.html#tweepy.API.search_tweets
and
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets

	Returns

	A dictionary with the default config for this processor.

Following are the keys for this dictionary:

	
	“credential_file”:
	Defines the path of credential file needed for Twitter API usage.

	
	“num_tweets_returned”:
	Defines the number of tweets returned by processor.

	
	“lang”:
	Language, restricts tweets to the given language, default is ‘en’.

	
	“date_since”:
	Restricts tweets created after the given date.

	
	“result_type”:
	Defines what type of search results to receive. The default is “recent.”
Valid values include:

mixed : include both popular and real time results in the response

recent : return only the most recent results in the response

popular : return only the most popular results in the response.

	
	“query_pack_name”:
	The query pack’s name, default is “query”.

	
	“response_pack_name_prefix”:
	The pack name prefix to be used in response data packs.

Vader

Vader Processors

	
class fortex.vader.VaderSentimentProcessor

	A wrapper of a sentiment analyzer: Vader (Valence Aware Dictionary
and Sentiment Reasoner). Vader needs to be installed to use this package

> pip install vaderSentiment

or

> pip install –upgrade vaderSentiment

This processor will add assign sentiment label to each sentence in the
document. If the input pack contains no sentence then no processing will
happen. If the data pack has multiple set of sentences, one can specify
the set of sentences to tag by setting the sentence_component attribute.

Vader URL: (https://github.com/cjhutto/vaderSentiment)

Citation: VADER: A Parsimonious Rule-based Model for Sentiment Analysis of
Social Media Text (by C.J. Hutto and Eric Gilbert)

	
initialize(resources, configs)

	The pipeline will call the initialize method at the start of a
processing. The processor and reader will be initialized with
configs, and register global resources into resource. The
implementation should set up the states of the component.

	Parameters

	
	resources – A global resource register. User can register
shareable resources here, for example, the vocabulary.

	configs – The configuration passed in to set up this
component.

	
classmethod default_configs()

	This defines a basic config structure for VaderSentimentProcessor.

	Returns

	A dictionary with the default config for this processor.

Following are the keys for this dictionary:

	
	“entry_type”:
	Defines which entry type in the input pack to make
prediction on. The default makes prediction on each Sentence
in the input pack.

	
	“attribute_name”:
	Defines which attribute of the entry_type
in the input pack to save score to. The default saves prediction
to the sentiment attribute for each Sentence in the input pack.

	
	“sentence_component”:
	str. If not None, the processor will process sentence with the
provided component name. If None, then all sentences will be
processed.

	
expected_types_and_attributes()

	Method to add expected type ft.onto.base_ontology.Sentence which
would be checked before running the processor if
the pipeline is initialized with
enforce_consistency=True or
enforce_consistency() [https://asyml-forte.readthedocs.io/en/latest/code/pipeline.html#forte.pipeline.Pipeline.enforce_consistency] was enabled for
the pipeline.

 Index

Index

 B
 | D
 | E
 | I
 | N
 | P
 | Q
 | R
 | S
 | T
 | V
 | Z

B

 	
 	BERTTokenizer (class in fortex.huggingface)

 	
 	BioBERTNERPredictor (class in fortex.huggingface)

D

 	
 	default_configs() (fortex.huggingface.BERTTokenizer class method)

 	(fortex.huggingface.BioBERTNERPredictor class method)

 	(fortex.huggingface.QuestionAnsweringSingle class method)

 	(fortex.huggingface.ZeroShotClassifier class method)

 	(fortex.nltk.NLTKChunker class method)

 	(fortex.spacy.SpacyBatchedProcessor class method)

 	(fortex.spacy.SpacyProcessor class method)

 	(fortex.stanza.StandfordNLPProcessor class method)

 	(fortex.tweepy.TweetSearchProcessor class method)

 	(fortex.vader.VaderSentimentProcessor class method)

 	
 	define_batcher() (fortex.spacy.SpacyBatchedProcessor class method)

E

 	
 	expected_types_and_attributes() (fortex.huggingface.BioBERTNERPredictor method)

 	(fortex.huggingface.QuestionAnsweringSingle method)

 	(fortex.huggingface.ZeroShotClassifier method)

 	(fortex.nltk.NLTKChunker method)

 	(fortex.nltk.NLTKLemmatizer method)

 	(fortex.nltk.NLTKNER method)

 	(fortex.nltk.NLTKPOSTagger method)

 	(fortex.vader.VaderSentimentProcessor method)

I

 	
 	initialize() (fortex.huggingface.BERTTokenizer method)

 	(fortex.huggingface.BioBERTNERPredictor method)

 	(fortex.huggingface.QuestionAnsweringSingle method)

 	(fortex.huggingface.ZeroShotClassifier method)

 	(fortex.nltk.NLTKChunker method)

 	(fortex.nltk.NLTKLemmatizer method)

 	(fortex.nltk.NLTKNER method)

 	(fortex.nltk.NLTKPOSTagger method)

 	(fortex.nltk.NLTKSentenceSegmenter method)

 	(fortex.spacy.SpacyBatchedProcessor method)

 	(fortex.spacy.SpacyProcessor method)

 	(fortex.stanza.StandfordNLPProcessor method)

 	(fortex.vader.VaderSentimentProcessor method)

N

 	
 	NLTKChunker (class in fortex.nltk)

 	NLTKLemmatizer (class in fortex.nltk)

 	NLTKNER (class in fortex.nltk)

 	
 	NLTKPOSTagger (class in fortex.nltk)

 	NLTKSentenceSegmenter (class in fortex.nltk)

 	NLTKWordTokenizer (class in fortex.nltk)

P

 	
 	pack() (fortex.huggingface.BioBERTNERPredictor method)

 	(fortex.spacy.SpacyBatchedProcessor method)

 	
 	predict() (fortex.huggingface.BioBERTNERPredictor method)

 	(fortex.spacy.SpacyBatchedProcessor method)

Q

 	
 	QuestionAnsweringSingle (class in fortex.huggingface)

R

 	
 	record() (fortex.huggingface.BERTTokenizer method)

 	(fortex.huggingface.BioBERTNERPredictor method)

 	(fortex.huggingface.QuestionAnsweringSingle method)

 	(fortex.huggingface.ZeroShotClassifier method)

 	(fortex.nltk.NLTKChunker method)

 	(fortex.nltk.NLTKLemmatizer method)

 	(fortex.nltk.NLTKNER method)

 	(fortex.nltk.NLTKPOSTagger method)

 	(fortex.nltk.NLTKSentenceSegmenter method)

 	(fortex.nltk.NLTKWordTokenizer method)

 	(fortex.spacy.SpacyBatchedProcessor method)

 	(fortex.spacy.SpacyProcessor method)

 	(fortex.stanza.StandfordNLPProcessor method)

S

 	
 	SpacyBatchedProcessor (class in fortex.spacy)

 	
 	SpacyProcessor (class in fortex.spacy)

 	StandfordNLPProcessor (class in fortex.stanza)

T

 	
 	TweetSearchProcessor (class in fortex.tweepy)

V

 	
 	VaderSentimentProcessor (class in fortex.vader)

Z

 	
 	ZeroShotClassifier (class in fortex.huggingface)

nav.xhtml

 Table of Contents

 		
 Welcome to Forte Wrapper’s documentation!

 		
 Get Started

 		
 Libraries and Wrapper Source

 		
 License

 		
 Processors

 		
 AllenNLP

 		
 AllenNLP Processors

 		
 SpaCy

 		
 SpaCy Processors

 		
 NLTK

 		
 NLTK Processors

 		
 Stanza

 		
 Stanza Processors

 		
 HuggingFace

 		
 HuggingFace Processors

 		
 Twitter

 		
 Twitter Processors

 		
 Vader

 		
 Vader Processors

_static/minus.png

_static/plus.png

_static/file.png

_static/logo_h.png
Forte

_static/img/Petuum.png

_static/img/lo